Course Type	Course Code	Name of Course		Т	Р	Credit
DE	NGLD502	Nanotechnology in Mineral and Hydrocarbon Exploration	3	0	0	3

Course Objective

The primary objective of the course is to introduce fundamental aspects of Nanotechnology in Mineral and Hydrocarbon Exploration to the students.

Learning Outcomes

- Upon completion of the course, students will be able to
 - □ Basic concept of nano geosciences.
 - □ Application of nano-studies in CBM, petroleum exploration, CO2 sequestration.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Nano- ores: High resolution techniques for studying ore samples at the nanoscale; Nanomaterials in Earth Science	4	Basic concept of nanogeosciences.
2	Trace elements systematics: Understanding nanoscale incorporation of trace metals in ore samples	4	Learn trace element systematics of ore samples.
3	Ore mobility: Colloidal transport, precipitation and isotopic fractionation in supergene settings	4	Ore mobility and its role in the formation of ore deposits
4	Ore depositional mechanism: The effects of atomic and nanoscale processes on ore stability	3	Understand the effects of atomic and nanoscale processes on ore depositional mechanism.
5	Introduction: Introduction, New forms of matter, Nanopowders and nanomaterials, nanopores and their properties, Structure of nanomaterials, Fullerene structures, New forms of carbon, carbon nanotubes (CNT)	8	Nanomaterials and carbon nanotubes
6	Analytical methods: Analytical methods for studying nanomaterial: Scanning Tunneling Microscope, Atomic Force Microscope (AFM), Raman Spectroscopy	5	Methods for studying nanomaterials
7	Processes: Processes for CNT production; Utilization of coal for production of CNT; Application of CNT- vacuum microelectronics, energy storage,	4	Various methods of producing CNT
8	Applications: Dynamics of natural gas adsorption; Application of Nanotechnology: gas separation and storage; Removal of SO _x and NO _x , Coal Bed Methane, Petroleum exploration; CO ₂ sequestration and CO ₂ adsorption dynamics of nanopores; Molecular sieves; Nanoprobes and sensors.	10	Application of nano-studies in CBM, petroleum exploration, CO ₂ sequestration.
	Total	42	

Recommended Books:

1. Carbon Nanotubes Synthesis, Structure, Properties and Applications : Mildred S. Dresslhaus, Gene Dresslhaus and PhaedonAvouris (Eds), 2001 (Springer)